Characterization of P-Property for some Z-Transformations on positive semidefinite cone

نویسندگان

  • R. Balaji
  • Michael Tsatsomeros
چکیده

The P -property of the following two Z-transformations with respect to the positive semidefinite cone is characterized: (i) I − S, where S : S → S is a nilpotent linear transformation, (ii) I − L A , where LA is the Lyapunov transformation defined on S n×n by LA(X) = AX + XA . (Here S denotes the space of all symmetric n×n matrices and I is the identity transformation.)

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Ela Characterization of P -property for Some Z-transformations on Positive Semidefinite Cone

The P -property of the following two Z-transformations with respect to the positive semidefinite cone is characterized: (i) I − S, where S : S → S is a nilpotent linear transformation, (ii) I − L A , where LA is the Lyapunov transformation defined on S n×n by LA(X) = AX + XA . (Here S denotes the space of all symmetric n×n matrices and I is the identity transformation.)

متن کامل

Rank-one solutions for homogeneous linear matrix equations over the positive semidefinite cone

The problem of finding a rank-one solution to a system of linear matrix equations arises from many practical applications. Given a system of linear matrix equations, however, such a low-rank solution does not always exist. In this paper, we aim at developing some sufficient conditions for the existence of a rank-one solution to the system of homogeneous linear matrix equations (HLME) over the p...

متن کامل

Some P-Properties for Nonlinear Transformations on Euclidean Jordan Algebras

A real square matrix is said to be a P-matrix if all its principal minors are positive. It is well known that this property is equivalent to: the nonsign-reversal property based on the componentwise product of vectors, the order P-property based on the minimum and maximum of vectors, uniqueness property in the standard linear complementarity problem, (Lipschitzian) homeomorphism property of the...

متن کامل

Z-transformations on proper and symmetric cones Z-transformations

Motivated by the similarities between the properties of Z-matrices on Rn + and Lyapunov and Stein transformations on the semidefinite cone S+, we introduce and study Z-transformations on proper cones. We show that many properties of Z-matrices extend to Z-transformations. We describe the diagonal stability of such a transformation on a symmetric cone by means of quadratic representations. Final...

متن کامل

Positive and completely positive cones and Z-transformations

A well-known result of Lyapunov on continuous linear systems asserts that a real square matrix A is positive stable if and only if for some symmetric positive definite matrix X, AX + XA is also positive definite. A recent result of Moldovan-Gowda says that a Z-matrix A is positive stable if and only if for some symmetric strictly copositive matrix X, AX + XA is also strictly copositive. In this...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2017